Graphs and What They Tell Us

Goals

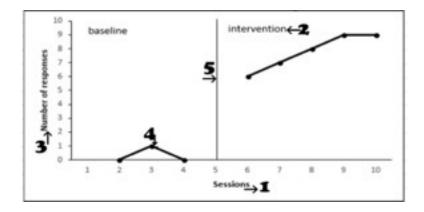
- Learn why graphs are important and how to read graphs
- Learn about baseline conditions and experimental control
- Identify experimental designs
- Identify potential confounding variables
- Learn guidelines for graphing.

Terms to know

- Data: product for measuring some _____ of behavior
- *Graph*: visual format for displaying data
- Independent variable (IV): the procedure or intervention that is being evaluated as being a method of changing behavior
 - example: positive reinforcement (i.e. praise) = independent variable
- Dependent variable (DV): the behavior being measuring/targeted for change
 ^o example: hanging up coat

Staff are responsible for demonstrating that the procedures used in intervention are in fact causing the desired change in behavior.

Graphs


•

- Allow for visual inspection of data
 - _____ can be detected
- Graphing and analyzing data allow for objective decisions about programing
- If the graph showed no change over time, the supervisor would______

Line graphs allow one to:

- Observe the specific level of behavior at a given point in time
- Observe specific levels of behavior under specific conditions before the intervention begins, known as__, and after intervention starts.
- Observe if behavior changed in one direction or another; increase or decrease
- Show which condition or procedures may be causing the change

How to read a graph

- 1. ______
- 3.
- 4.
- 5.

Graphs and What They Tell Us

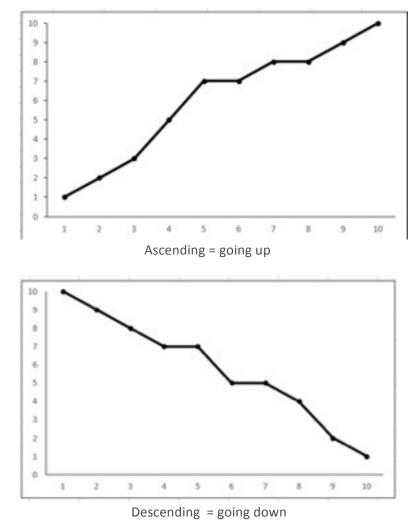
Graph components:

- X axis = shows passage of time such as _____ or _____
- Y axis = quantitative unit being measured, including:
 - # Of responses or _____

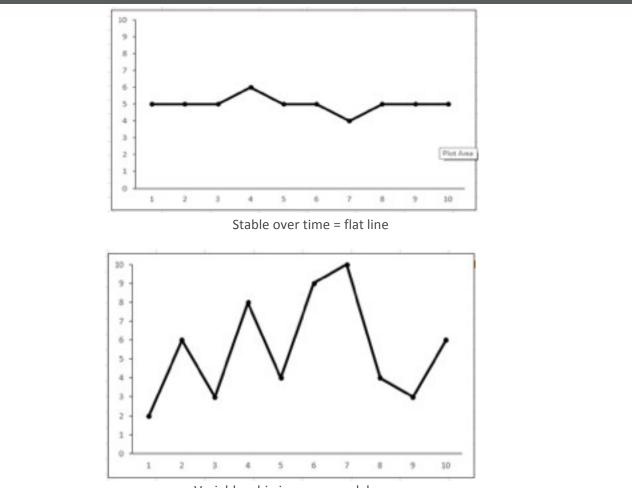
Min, sec, etc. when graphing ______

• % When using _____or _____

Data point:


- Shows the specific _____ on the
- Independent variable: top of graph shows what condition is being implemented. such as intervention or _
- Condition or phase change line change line shows when changed

Baseline:


- Baseline condition comes first shows the child's responses before the intervention began.
- Compare baseline date to intervention data

Data trends:

• The data path is:

Graphs and What They Tell Us

Variable = big jumps up and down

Experimental control:

- When the data show the change in the behavior was the direct result of the independent variable (intervention)
- This change can be repeated and reliably demonstrated over time

Experimental Design

Four main types

- 1. AB design
 - Most simple design
 - Commonly used to track skill acquisition and challenging behavior
 - Label different conditions with letters:
 - o baseline (comes before intervention) = A
 - o intervention = B
 - Compare A&B conditions
 - This design_____show experimental control
- 2. Reversal design
 - ABAB
 - Baselines/ treatment/ withdraw treatment (baseline)/ reintroduce treatment
 - This design demonstrates that the intervention is responsible for the change
 - This design does demonstrate _____

Graphs and What They Tell Us

Do not use a reversal design when:

- Intervention results in the student learning a new skill that cannot be unlearned.
 o Ex: addition,
- Behavior being tracked is a severe challenging behavior that could cause injury to student or others
- 3. Multiple baseline design
 - This design uses the same intervention or ______ implemented across 3 or more students, environments, responses or staff members using the AB design
 - Baseline starts simultaneously for all. Once baseline is established:
 - Start the 1st student/environment/response in the intervention phase
 - o Start with 2nd condition after 1st intervention has been established
 - o Start with 3rd condition after 1st and 2nd intervention has been established
 - If the same intervention showed change behavior across different children this does demonstrate______
- 4. Alternating treatments design
 - Utilizes 2 or more interventions plotted on the same graph, for the same child, for the same behavior
 - Allows staff to compare multiple treatments to see which is the _
 - If there is consistent contrast between the two interventions and their effect on behavior, this
 demonstrate experimental control

Confounding variables

 Factors unrelated to the independent variable (may be uncontrollable) that likely impacts behavior being measured

• Examples: different interventions at home vs. school, changes in____

Guidelines for graphing

Always consult with your agency first, but in general:

- Graph data regularly per supervisor instructions
- Identify changes in behavior quickly
- Makes necessary modifications to intervention as soon as possible
- Graphs should be clear so they are easy to read
- Use correct terminology
- Be objective when collecting notes on behavior/intervention
- If there are noticeable changes in data, tell you supervisor; this may indicate a
- After graphing data, spend time analyzing the graph and try to identify any patterns
 - Are we moving in the right direction? Analyze the data path to help determine if the intervention is effective